首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51025篇
  免费   6087篇
  国内免费   3013篇
电工技术   4113篇
技术理论   3篇
综合类   4786篇
化学工业   10405篇
金属工艺   1371篇
机械仪表   1951篇
建筑科学   4989篇
矿业工程   4151篇
能源动力   1863篇
轻工业   3556篇
水利工程   1560篇
石油天然气   3819篇
武器工业   395篇
无线电   3332篇
一般工业技术   5897篇
冶金工业   2833篇
原子能技术   1168篇
自动化技术   3933篇
  2024年   100篇
  2023年   749篇
  2022年   1292篇
  2021年   1967篇
  2020年   1902篇
  2019年   1549篇
  2018年   1459篇
  2017年   1701篇
  2016年   1989篇
  2015年   2103篇
  2014年   3272篇
  2013年   3429篇
  2012年   4007篇
  2011年   4032篇
  2010年   3054篇
  2009年   3097篇
  2008年   2774篇
  2007年   3256篇
  2006年   2980篇
  2005年   2589篇
  2004年   2068篇
  2003年   1902篇
  2002年   1601篇
  2001年   1279篇
  2000年   1024篇
  1999年   865篇
  1998年   729篇
  1997年   569篇
  1996年   523篇
  1995年   443篇
  1994年   373篇
  1993年   248篇
  1992年   209篇
  1991年   167篇
  1990年   155篇
  1989年   120篇
  1988年   128篇
  1987年   69篇
  1986年   49篇
  1985年   39篇
  1984年   43篇
  1983年   22篇
  1982年   26篇
  1981年   14篇
  1980年   21篇
  1964年   10篇
  1961年   10篇
  1959年   13篇
  1955年   9篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
22.
With a growing interest in hydrogen as energy carrier, the efficient purification of hydrogen from gaseous mixtures is very important. This paper addresses the separation of hydrogen using Carbon Molecular Sieves Membranes (CMSM), which show an attractive combination of high permeability, selectivity and stability. Supported CMSM containing various amounts of aluminium have been prepared from novolac and aluminium acetyl acetonate (Al(acac)3) as carbon and alumina precursors. The thickness of the CMSM layers depend on the content of Al(acac)3 in the dipping solution, which also has influence in the pore size and pore size distribution of the membranes. The permeation properties of the membranes against the Al content in the membrane follows a volcano shape, where the membrane containing 4 wt (%) of Al(acac)3 has the best properties and was stable during 720 h for hydrogen at 150 °C and 6 bar pressure difference. All the CMSM have permeation properties well above the Robeson Upper limit.  相似文献   
23.
Three kinds of alkoxy group-functionalized acidic ionic liquids (ILs) are reported in this work, namely, 1-(methoxyethyl)-3-methylimidazolium hydrogen sulphate [MOE-MIM]HSO4, 1-(ethyoxyethyl)-3-methylimidazolium hydrogen sulphate [EOE-MIM]HSO4, and 1-(propyoxyethyl)-3-methylimidazolium hydrogen sulphate [POE-MIM]HSO4. The short side chain on the cation of [MOE-MIM]HSO4 decreases the solubility of the IL in butanol and butyric acid and facilitates the separation of the IL from a reaction medium. The yield of butyl butyrate is up to 99.5%. After 10 rounds of recycling, the catalytic performance of [MOE-MIM]HSO4 shows no significant changes.  相似文献   
24.
《Ceramics International》2021,47(18):25883-25894
Oily wastewater treatment is a global challenge due to the substantial amount of effluent resulted from many industrial and domestic activities. To overcome the challenge of using existing treatment approach and fouling, superoleophobic coatings were fabricated. In this study, a superoleophobic membrane surface was obtained using the sol-gel technique with perfluorooctanoate (PFO), poly (diallyl dimethylammonium chloride) (PDADMAC), and nanoparticles as complex-polymer nanocomposites. The effects of coating cycles on the surface structure, chemical properties, surface chemistry, and oleophobicity of the surface were examined using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and oil contact angle measurement. The results showed that the coated layer successfully adhered to the substrate surface. However, the chemical stability with respect to oil contact angle (OCA) revealed a decline at pH 7 and pH 9 and maintained stability at pH 3. Besides, oil flux at 63.0 L/m2. h was achieved for PDADMAC-Al2O3/44 wt% PFO and the highest separation efficiency of 98% was obtained. Furthermore, the oil rejection decreases as the oil concentration increases from 1 to 3 g/L. OCA of 155° was obtained after 5 coating cycles. Apart from mitigating substrate fouling, the superoleophobic and superhydrophilic coating can be applied to a ceramic-based hollow fibre membrane and efficiently used for the separation of oil from oily wastewater.  相似文献   
25.
26.
ABSTRACT

Absorbed-dose estimation is essential for evaluation of the radiation tolerance of minor-actinide-separation processes. We propose a dose-evaluation method based on radiation permeability, with comparisons of heterogeneous structures seen in the solvent-extraction process, such as emulsions forming in the mixture of the organic and aqueous phases. A demonstration of radiation-energy-transfer simulation is performed with a focus on the minor-actinide-recovery process from high-level liquid waste with the aid of the Monte Carlo radiation-transport code PHITS. The simulation results indicate that the dose absorbed by the extraction solvent from alpha radiation depends upon the emulsion structure, and that from beta and gamma radiation depends upon the mixer-settler-apparatus size. Non-negligible contributions of well-permeable gamma rays were indicated in terms of the plant operation of the minor-actinide-separation process.  相似文献   
27.
Prediction of mode I fracture toughness (KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression (LMR) and gene expression programming (GEP) methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and elastic modulus (E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets. Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156, respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2 value and lower errors.  相似文献   
28.
Organosilica bis(triethoxysilyl) ethane (BTESE) membranes were explored for pervaporation dehydration of binary and ternary mixtures of ethyl acetate (EA) by undiluted sol coating combined with flash firing. Three BTESE membranes (M1, M2, and M3) were fabricated on macroporous supports by varying BTESE concentrations (0.5, 2.5, and 5 wt% BTESE, respectively) in polymer sols. The membranes were characterized by DLS, SEM, FTIR, XRD, contact angle, AFM, and pervaporation performance to discuss the effect of the BTESE contents in the polymer sol on the formation and dehydration performance of resulting organosilica membranes. It was found that 5 wt% loading of BTESE led to a highly selective membrane for dehydration of EA/H2O mixture. Among the synthesized membranes, M3 delivered flux of 0.84 ± 0.05 kg.m−2.h−1 with a selectivity of >10,000 for EA/H2O mixture (98/2 wt%) at 60°C. The time course of pervaporation dehydration for the EA/H2O mixture (95/5 wt%) confirms the stability of BTESE membrane in the investigated time period of 120 h. Further, the membrane exhibited excellent selectivity larger than 10,000 for separation of ternary mixtures (90/2/8 wt%) of ethyl acetate/ethanol/water and n-propyl acetate/isopropanol/water respectively, the composition of which is similar to the top product of the distillation column used in the industrial esterification process. The best separation performance and excellent acid stability of BTESE membranes in this study suggest that the simple synthesis protocol of undiluted sol coating and flash firing will provide a cost-effective, quick, and efficient synthesis route for practical membrane based applications.  相似文献   
29.
30.
Extensive researches on scintillators have been executed to satisfy the excellent radiation detection materials in broad applications. However, practical application of conventional scintillators is limited due to the limitations of high cost, time-consuming fabrication process and insufficient radioluminescence. Herein, high density precursor glass doped with Tb3+ was designed to absorb X-ray efficiently and produce green emission. Molecular dynamics simulation was used to simulate the phase separation process in melting process. Then, Tb3+-doped Ba0.84Gd0.16F2.16 glass ceramics (GCs) with excellent structural and optical properties were elaborated by melt quenching technic and further heat treating. Their structural properties, photoluminescence (PL) and X-ray excited luminescence (XEL) were explored detailedly. The internal quantum efficiency of PL is 64 % in GCs. The XEL intensity is 192 % of that of Bi4Ge3O12 (BGO) commercial scintillator. Our results suggest that Ba0.84Gd0.16F2.16:Tb3+ GCs might have potential application in X-ray detection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号